Databricks Certified Associate Developer for Apache Spark 3.0 Program
A Step by Step Hands-on Guide to prepare for one of the most challenging certifications, the Databricks Certified Associate Developer for Apache Spark 3.0.
Introduction to Databricks Certified Associate for Spark Developer Course
Sign up for Databricks Academy Website
Get Details related to Databricks Certified Associate exam for Spark Developers
Overview of Databricks Certified Associate for Apache Spark Curriculum
Resources to prepare for Databricks Certified Associate Spark Developer Exam
Exam Details for Databricks Certified Associate Developer for Apache Spark
Registering for Databricks Certified Associate Developer for Apache Spark
Sign up for Azure Portal
Setup Databricks Platform using Azure
Prerequisites for the Databricks Spark Developer Certification
Create Single Node Cluster to explore Spark APIs
Getting Started with Databricks Notebooks
Setup Databricks Certification Course Material
Quick Tour of Course Material using Databricks Notebooks
Install and Configure Databricks CLI
Interacting with File System using CLI
Setup Retail Datasets using Databricks CLI
Validate Data Sets using Databricks Notebooks
Create Spark Dataframes using Python Collections and Pandas Dataframes - Introduction
Create Single Column Spark Dataframe using List
Create Multi Column Spark Dataframe using List
Overview of Spark Row
Convert List of Lists into Spark Dataframe using Row
Convert List of Tuples into Spark Dataframe using Row
Convert List of Dicts into Spark Dataframe using Row
Overview of Basic Data Types in Spark
Specifying Schema for Spark Dataframe using String
Specifying Schema for Spark Dataframe using List
Specifying Schema using Spark Types
Create Spark Dataframe using Pandas Dataframe
Overview of Special Data Types in Spark
Array Type Columns in Spark Dataframes
Map Type Columns in Spark Dataframes
Struct Type Columns in Spark Dataframes
Selecting and Renaming Columns in Spark Data Frames - Introduction
Creating Spark Data Frame to Select and Rename Columns
Overview of Narrow and Wide Transformations
Overview of Select on Spark Data Frame
Overview of selectExpr on Spark Data Frame
Referring Columns using Spark Data Frame Names
Understanding col function in Spark
Invoking Functions using Spark Column Objects
Understanding lit function in Spark
Overview of Renaming Spark Data Frame Columns or Expressions
Naming derived columns using withColumn
Renaming Columns using withColumnRenamed
Renaming Spark Data Frame columns or expressions using alias
Renaming and Reordering multiple Spark Data Frame Columns
Manipulating Columns in Spark Data Frames - Introduction
Predefined Functions using Spark Data Frame APIs
Create Dummy Spark Data Frames
Categories Of Functions to Manipulate Columns in Spark Data Frames
Getting Help on Spark Functions
Special Functions col and lit using Spark
Common String Manipulation Functions on Spark Data Frames
Extracting Strings using substring from Spark Data Frame Columns
Extracting Strings using split from Spark Data Frame Columns
Padding Characters around strings in Spark Data Frame Columns
Trimming Characters from strings in Spark Data Frame Columns
Date and Time Manipulation Functions using Spark Data Frames
Date and Time Arithmetic using Spark Data Frames
Using date and time trunc functions on Spark Data Frames
Date and Time Extract Functions on Spark Data Frames
Using to_date and to_timestamp on Spark Data Frames
Using date_format Function on Spark Data Frames
Dealing with Unix Timestamp in Spark Data Frames
Dealing with nulls in Spark Data Frames
Filtering Data from Spark Data Frames - Introduction
Creating Spark Data Frame for Filtering
Overview of Filter or Where Function on Spark Data Frame
Overview of Conditions and Operators related to Spark Data Frames
Filter using Equal Condition on Spark Data Frames
Filter using Not Equal Condition on Spark Data Frames
Filter using Between Operator on Spark Data Frames
Dealing with Null Values while Filtering Data in Spark Data Frames
Overview of Boolean Operations
Boolean OR on same column of Spark Data Frame and IN Operator
Filtering with Greater Than and Less Than on Spark Data Frames
Boolean AND Condition on Spark Data Frames
Boolean OR on different columns of a Spark Data Frame